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Abstract

Given a computational resource–for example, the ability to visualize an object
rotating–how do you best make use of it? We explored how mental simulation
should be used in the classic psychological task of determining if two images de-
pict the same object in different orientations. We compared two models on this
mental rotation task, and found that a model based on an optimal experiment de-
sign for Bayesian quadrature is qualitatively more consistent with classic behav-
ioral data than a simpler model. We suggest that rational models which adaptively
exploit available resources are promising in their ability to characterize metacog-
nitive processes like mental simulation.

1 Introduction

One of the challenges of solving any computational problem is determining how best to use the
available computing resources. For example, a computer can render complex graphics faster by
recognizing that this kind of computation should be carried out by a specialized graphics processor.
The same challenge arises in designing an intelligent agent: how should the agent make best use
of its computing resources? Recent research on rational models of human cognition has provided
insight into the nature of the computational problems that human beings need to solve (e.g., [1, 2]),
but leaves open the question of how people allocate their resources in solving those problems. In
this paper, we take a step towards addressing this question, applying rational analysis (in the spirit
of [3, 4, 5]) to one aspect of human metacognition: the use of mental simulation.

Consider the images on the left in Fig. 1. In each panel, are the two depicted objects identical
(except for a rotation), or distinct? When presented with this mental rotation task, people default to
a strategy in which they visualize one object rotating until it is congruent with the other [6]. There
is strong evidence for such “mental simulation”: we can imagine three-dimensional objects in our
minds and manipulate them, to a certain extent, as if they were real [7]. However, the use of mental
simulation is predicated on determining appropriate parameters to give the simulation, analogous to
determining exactly what computation should be passed to a graphics processor. In the case of the
classic mental rotation task, we might ask: How do people know which way to rotate the object?
When should one stop rotating and accept the hypothesis that the objects are different?

Recent work in cognitive science has shown how the allocation of cognitive resources to solving
computational problems can be analyzed using the methods of statistical decision theory [8, 9]. We
suggest that this “rational metacognition” approach may also be applied to the problem of mental
rotation. Specifically, we hypothesize that mental rotation can be framed as integration over a prob-
ability distribution, with the direction of rotation becoming an optimal experiment design problem
(or in machine learning parlance, an active learning problem). In an initial investigation into this hy-
pothesis, we find that recent methods for Bayesian quadrature [10, 11, 12], in contrast to a simpler
heuristic model, provide a possible solution to determining the direction and extent of rotation.



Figure 1: Classic mental rotation task. Participants in [6] saw stimuli such as those on the left, and
judged whether each pair of shapes was the same shape in two different orientations (“same” pairs),
or two different shapes (“different” pairs). A and B show “same” pairs, while C shows a “different”
pair. The plots on the right indicate mean response times on the mental rotation task, exhibiting a
strong linear relationship with increasing variance as a function of true rotation.

2 Computational-level model

We begin by analyzing mental rotation at Marr’s computational level [3]: what is the problem to
be solved? Formally, people are presented with two images, Xa and Xb, which are the coordinates
of the vertices of 2D shapes (e.g., Fig. 2a). Participants must determine whether Xa and Xb depict
the same shape, i.e., whether ∃R s.t. Xb = RXa, where R is a rotation matrix. We can formulate
the judgment of whether Xa and Xb have the same origins by deciding about two hypotheses, h0:
∀R Xb 6= RXa and h1: ∃R s.t. Xb = RXa. To compare the hypotheses, we need to compute
the posterior for each: p(h | Xa, Xb) ∝ p(Xa, Xb | h)p(h). Assuming the hypotheses are equally
likely a priori, the prior term p(h) will cancel out when comparing h0 and h1, thus allowing us to
focus on the likelihoods, which are p(Xa, Xb | h0) = p(Xa)p(Xb) for h0 and p(Xa, Xb | h1) =∫
R
p(Xa)p(Xb|Xa, R)p(R) dR for h1. From these likelihoods, we compute the ratio ` which is

given by ` =
(∫
R
p(Xb | Xa, R)p(R) dR

)
/ p(Xb). If ` < 1, then h0 is the more likely hypothesis.

If ` > 1, then h1 is the more likely hypothesis.

3 Algorithmic approximation

We define the prior probability of shape X to be p(X) = n!
(

1
2π

)n
according to a generative pro-

cedure.1 This gives us the denominator of `. Computing the numerator is more difficult, as we we
cannot compute p(Xb|Xa, R) directly. Instead, we introduce a new variable XR denoting a mental
image, which approximates RXa. The XR are generated by repeated application of a function τ ,
i.e. XR = RXa = τ(XR−r, r) = τ(τ(XR−2r, r), r) = . . . = τ ( R

r )(Xa, r), where r is a small
angle, and τ (i) indicates i recursive applications of τ . Using this sequential function, we get:

p(Xa, Xb | h1) =

∫
R

∫
X

p(Xb|X)p(X|Xa, R)p(Xa)p(R) dX dR

=

∫
R

∫
X

p(Xb|X)δ(τ ( R
r )(Xa, r)−X)p(Xa)p(R) dX dR =

∫
R

p(Xb|XR)p(Xa)p(R) dR (1)

However, the exact form of p(Xb|XR) is still unknown. We approximate it with a similar-
ity function S(Xb, XR), and denote the resulting integral as Z =

∫
R
S(Xb, XR)p(R) dR ≈∫

R
p(Xb|XR)p(R) dR. We define the similarity based on Gaussian similarity and possible map-

pings M of the vertices,2 i.e. S(Xb, XR) = 1
2n

∑
M∈M

∏n
i=1N (Xb[i] | (MXR)[i],Σ) where i

denotes the ith vertex. An example stimulus and corresponding S is shown in Fig. 2.
1A set of n vertices could be chosen in any of n! different ways, and each vertex is located at a random

angle (between 0 and 2π) and radius (between 0 and 1).
2Because the vertices are connected in a way which forms a closed loop, we need only consider 2nmappings

of the n vertices (we assume uncertainty for which is the “first” vertex, and then which of its two neighbors is
the “second”). So, the possible orderings are of the form M = {0, 1, . . . , n}, M = {n, 0, . . . , n− 1}, etc.
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(b) Naı̈ve model
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(c) Bayesian Quadrature Model

Figure 2: Example model behavior. (a) An example stimulus in which the shapes differ only by
a rotation. All stimuli consist of three to six vertices centered around the origin, and edges which
create a closed loop from the vertices. The true angle of rotation between Xa and Xb is at 2π

3 . (b-c)
Likelihood function and naı̈ve (b) and BQ (c) model estimates. The sampled points R (red circles)
are then used to estimate S (black lines are the true S, red lines are the estimate).

To summarize, the process of generating a mental image consists of computing a singleXR and then
computing S(Xb, XR). We denote the sequence of rotations computed by this procedure as R =
{R1, R2, . . . }. However, this sequence cannot be arbitrary, as mental rotation is computationally
demanding. Our goal is to minimize the number of rotations |R| while still obtaining an estimate of
Z that is accurate enough to choose the correct hypothesis.

Naı̈ve As a lower bound on performance, we defined a naı̈ve model which performs a hill-climbing
search over the similarity function until it reaches a (possibly local) maximum. Once a maximum
as been found, the model computes an estimate of Z by linearly interpolating between sampled
rotations (e.g., Fig. 2b).

Bayesian Quadrature A more flexible strategy uses what is known as Bayesian Quadrature (BQ)
[10, 11] to estimate Z. BQ computes a posterior distribution over Z by placing a Gaussian Pro-
cess (GP) prior on the function S and evaluating S at a particular set of points. However, while
S is a non-negative likelihood function, GP regression enforces no such constraint. [12] give a
method to place a prior over the log likelihood, thus ensuring that S = elogS will be positive,
i.e. E[Z | logS] =

∫
logS

(∫
R

exp(logS(Xb, XR))p(R) dR
)
N (logS | µlogS ,ΣlogS) d logS,

where µlogS and ΣlogS are the mean and covariance, respectively, of the GP over logS given R.
We approximate this according to the method given in [12], i.e. µZ = E[Z | S, logS,∆c] ≈∫
R
µS(1 + µ∆c)p(R) dR, where µS is the mean of a GP over S given R; and µ∆c of a GP over

∆c = µlogS − logµS given Rc, which consists of R and a set of intermediate candidate points c as
described in [12]. The variance is Ṽ (Z|S, logS,∆c) as defined in Equation 12 of [12].

We pick the initial direction of rotation which results in the higher value of S. From then on, at
each step we compute µZ and Ṽ to estimate a distribution over the likelihood ratio `, i.e. p(`) ≈

1
p(Xb) N (Z | µZ , σz). We choose h0 when p(` < 1) ≥ 0.95, and h1 when p(` > 1) ≥ 0.95.3

Until one of these conditions are met (or the shape has been fully rotated), the model will continue
to compute rotations and update its estimate of Z. Additionally, the model will change direction if
doing so would lower the expected posterior variance of Z given some new sample a.4 Thus, it is
able to actively change its strategy, unlike the hill-climbing procedure.

4 Results

We evaluated each model’s performance on 20 randomly generated shapes which had between three
and six vertices, inclusive, (e.g., Xa in Fig. 2a). For each shape, we computed 18 “same” and 18
“different” stimuli pairs, with R spaced at 20′ increments between 0 and 360, as in [6]. “Same”
pairs were created by rotating Xa by R; the same was true for “different” pairs, except that Xa

3We chose a threshold of 0.95 because the standard confidence interval is 95%. In the future, however, this
threshold could be fit to human data.

4This is similar to the full posterior variance calculation given in [12], however we compute the variance
given only the current mean estimate of a.
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(a) All stimuli. Each subplot shows the correspon-
dence between the true angle of rotation (R) for
“same” pairs and the amount of rotation performed
by the model.
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(b) Correct stimuli. Each subplot shows the mod-
els’ mean rotations over stimuli pairs that were
judged correctly. Black dots correspond to “same”
pairs, and blue lines to “different” pairs.

Figure 3: Model rotations. Error bars/shaded regions indicate one standard deviation, and the
dotted lines indicate the least-squares fit to the “same” pairs.

was also reflected across the y-axis. To gauge performance, we looked at response error rates: how
accurate was the model at choosing the correct hypothesis? This was defined as the mean error
(ME), or fraction of times the model chose incorrectly. We additionally looked at rotations: for
those “same” pairs which the model judged correctly, how correlated were the model’s rotations
with the true angles of rotation? We quantified this using the Pearson’s correlation coefficient ρ for
the true rotation, R, versus the number of steps/rotations take by the model, |R|. Fig. 3 shows true
rotations vs (3a) the number of steps/rotations taken by the model for individual stimuli, and (3b)
the average number of steps taken for each true rotation. This latter analysis can be qualitatively
compared to the results of [6], as shown in Fig. 1.

Naı̈ve The naı̈ve model’s response error rate was ME = 0.18, which is better than chance (where
chance is equivalent to guessing randomly, i.e. ME = 0.5). The correlation between the naı̈ve
model’s average rotation and the true angle of rotation was ρ = 0.82 (Fig. 3b, left). As shown
in Fig. 3b (right), the naı̈ve model corresponds extremely well to the true angle of rotation when
R < π

2 ; this is because it needs to rotate less and is therefore less likely to get stuck on local
maxima. For R > π

2 , we see an increasing tendency to under-rotate due to getting stuck on local
maxima, as well as a tendency to over-rotate if the wrong direction was initially chosen.

Bayesian Quadrature The BQ model was much more accurate in choosing the correct hypothesis
than the naı̈ve model (ME = 0.04). The number of rotations computed by the BQ model were
strongly correlated with the true rotations (ρ = 0.98), a result which is qualitatively similar to that
exhibited by humans (Fig. 1 vs. Fig. 3b, right). Because the BQ model has the capacity to “reset”,
it could recover from rotating in the incorrect direction (e.g., Fig. 2c) and thus did not over-rotate as
frequently as the naı̈ve model. The BQ model also under-rotated less frequently because it rotates
until it is confident in its estimate of Z and thus does not get stuck on local optima.

5 Conclusion

How do people allocate their mental simulation resources? We performed an initial investigation
into the specific case of mental rotation, using rational analysis to characterize optimal strategies.
We demonstrated that the classic mental rotation task [6] presents a non-trivial computational prob-
lem and cannot be solved with a simple, heuristic-based model. In contrast, an adaptive, Bayesian
Quadrature model provides answers to puzzling questions surrounding the incremental nature of
mental rotation: which way should the object be rotated, and for how long? This model formalizes
these answers in a way that is qualitatively consistent with human behavior, both in response time
linearity [6] and variability [13]. Although this research is still in its first stages, these initial results
support the idea that mental rotation may be another instance in which people do appropriately use
available computational resources to solve the task at hand.
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