
What to simulate? Inferring the right direction for mental rotation
Jessica B. Hamrick (jhamrick@berkeley.edu)

Thomas L. Griffiths (tom griffiths@berkeley.edu)
Department of Psychology, University of California, Berkeley, CA 94720 USA

Abstract

When people use mental imagery, how do they decide which
images to generate? To answer this question, we explored how
mental simulation should be used in the classic psychological
task of determining if two images depict the same object in
different orientations (Shepard & Metzler, 1971). Through a
rational analysis of mental rotation, we formalized four mod-
els and compared them to human performance. We found that
three models based on previous hypotheses in the literature
were unable to account for several aspects of human behavior.
The fourth is based on the idea active sampling (e.g., Gureckis
& Markant, 2012), which is a strategy of choosing actions that
will provide the most information. This last model provides a
plausible account of how people use mental rotation, where the
other models do not. Based on these results, we suggest that
the question of “what to simulate?” is more difficult than has
previously been assumed, and that an active learning approach
holds promise for uncovering the answer.
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Introduction
One of the most astonishing cognitive feats is our ability
to envision, manipulate, and plan with objects—all without
actually perceiving them. This mental simulation has been
widely studied, including an intense debate about the under-
lying representation of mental images (e.g., Kosslyn, Thomp-
son, & Ganis, 2009; Pylyshyn, 2002). But this debate hasn’t
addressed one of the most fundamental questions about men-
tal simulation: how people decide what to simulate.

Mental rotation provides a simple example of the decision
problem posed by simulation. In the classic experiment by
Shepard and Metzler (1971), participants viewed images of
three-dimensional objects and had to determine whether the
images depicted the same object (which differed by a rota-
tion) or two separate objects (which differed by a reflection
and a rotation). They found that people’s response times
(RTs) had a strong linear correlation with the minimum an-
gle of rotation, a result which led to the conclusion that peo-
ple solve this task by “mentally rotating” the objects until
they are congruent. However, this explanation leaves several
questions unanswered. How do people know the axis around
which to rotate the objects? If the axis is known, how do peo-
ple know which direction to rotate the objects? And finally,
how do people know how long to rotate?

In this paper, we explore these questions through rational
analysis (Marr, 1983; Anderson, 1990; Shepard, 1987) and
compare four models of mental rotation. We begin the pa-
per by discussing the previous literature on mental imagery.
Next, we outline computational- and algorithmic-level anal-
yses of the problem of mental rotation. We then describe a
behavioral experiment based on the classic mental rotation
studies (e.g., Cooper, 1975), and compare the results of our

experiment with each of the models. We conclude with a dis-
cussion of the strengths and weaknesses of each model, and
lay out directions for future work.

Modeling mental rotation
Previous models of mental rotation have largely focused on
the representation of mental images, rather than how peo-
ple decide which mental images to generate. Kosslyn and
Shwartz (1977) proposed a model of the mental imagery
buffer, but did not say how it should be used. Similarly,
Julstrom and Baron (1985) and Glasgow and Papadias (1992)
were mostly concerned with modeling the representational
format underlying imagery. Although Anderson (1978) em-
phasized the importance of considering both representation
and process, he dismissed the problem of determining the di-
rection of rotation as a “technical difficulty”.

The only models (of which the authors are aware) that se-
riously attempted to address the decision of what to simu-
late are those by Funt (1983) and Just and Carpenter (1985).
In both of these models, the axis and direction of rotation
are computed prior to performing the rotation. One object is
then rotated through the target rotation, and is checked against
the other object for congruency. However, this approach as-
sumes that the corresponding points on the two objects can
be easily identified, which is not necessarily the case. Indeed,
the state-of-the-art in computer vision suggests that there is
more to this problem than checking for congruency, partic-
ularly when the shapes are complex or not exactly the same
(e.g., Belongie, Malik, & Puzicha, 2002; Sebastian, Klein, &
Kimia, 2003). Additionally, recent research shows that when
performing physical rotations, people do not rotate until con-
gruency is reached; they may even rotate away from near per-
fect matches (Gardony, Taylor, & Brunye, 2014).

If people are not computing the rotation beforehand, what
might they be doing? To answer this question, we perform
a rational analysis of the problem of mental rotation (Marr,
1983; Anderson, 1990; Shepard, 1987). At the computa-
tional level, we can say that the problem is to determine
which spatial transformations an object has undergone based
on two images of that object (which do not include informa-
tion about point correspondences). At the algorithmic level,
we are constrained by the notion that mental images must be
transformed in an analog manner (or in a way that is approx-
imately analog), and that mental images are time-consuming
and effortful to generate. Thus, the goal is to make this de-
termination while performing a minimum amount of compu-
tation (i.e., as few rotations as possible).

The original “congruency” hypothesis (Shepard & Met-
zler, 1971) is a rational solution to this problem, in the sense



Figure 1: Example stimuli and similarities. This figure
shows a “flipped” stimulus pair with a rotation of 120◦, and
the corresponding similarity functions for each hypothesis.
Arrows indicate where each shape lies on the curve.

that the smallest amount of computation coincides with ro-
tating through the minimum angle. However, it violates
the constraint that we do not know the points of correspon-
dence between the images, which is what necessitates the use
of imagery. Noting that a rational solution need not main-
tain a single trajectory of rotation, we explore an alternative
model, which—rather than computing the angle of rotation—
engages in an active sampling strategy.

Active sampling is the idea that people gather new infor-
mation in a manner that increases certainty about the prob-
lem space. An everyday example of this can be observed in
the game of “20 questions”, in which one person thinks of a
concept, and another has to guess the concept in 20 questions
or less. The first question is almost always “person, place,
or thing?”, because the answer provides the most possible
information about the concept of interest. Active sampling
has gained support across several areas of cognitive science
(e.g., Gureckis & Markant, 2012), including other spatial do-
mains (Juni, Gureckis, & Maloney, 2011). In the case of men-
tal rotation, actively choosing rotations may be the best way
to gather evidence about the similarity between the observed
shapes when the angle of rotation is unknown.

How should we rotate?
In this section, we formalize our rational analysis and pro-
pose four models of mental rotation: one based on existing
models; two which are extensions of the first but with relaxed
assumptions; and one based on the active sampling approach.

The task we are interested in modeling involves observing
two images and determining whether one image depicts the
“same” object as the other image (differing by a rotation), or
a “flipped” version of the object in the other image (differing
by a reflection and then a rotation).

Computational-level analysis
We denote the shapes as Xa and Xb and assume Xb is gener-
ated by a transformation of Xa, i.e. Xb = f (Xa,θ,h), where θ

is a rotation, h = 0 is the hypothesis that the images depict the
same object, and h = 1 is the hypothesis that the images de-
pict mirror-image objects. The posterior probability of each
hypothesis given the observed shapes is then: p(h | Xa,Xb) ∝∫

p(Xb | Xa,θ,h)p(h)p(θ)dθ, where p(Xb | Xa,θ,h) is the
probability that Xb was generated from Xa. Because we want

to determine which hypothesis is more likely, the quantity of
interest is a posterior odds ratio B := p(h = 0 | Xa,Xb)/p(h =
1 | Xa,Xb) which (assuming that all rotations are equally
likely) is equivalent to:

B =
(
∫

p(Xb | Xa,θ,h = 0)dθ) · p0

(
∫

p(Xb | Xa,θ,h = 1)dθ) · p1
, (1)

where p0 = p(h= 0) and p1 = p(h= 1), for brevity. If B > 1,
then we accept the hypothesis that the images depict the same
object (h = 0); if B < 1, then we accept the hypothesis that
the images depict flipped objects (h = 1).

Algorithmic constraints
We represent a shape of N vertices with a N× 2 coordinate
matrix X = [x1, . . . ,xN ], and denote the rotation and/or reflec-
tion transformation as f (X,h,θ) := XFT

h RT
θ

, where Rθ is a
rotation matrix, and Fh is either the identity matrix I (when
h = 0) or a reflection matrix across the y-axis (when h = 1).

We define p(Xb | Xa,θ,h) to be the similarity be-
tween Xb and a transformation of Xa: p(Xb | Xa,θ,h) :=
S(Xb, f (Xa,h,θ)). We do not know which vertices of Xb
correspond to which vertices of Xa, so the similarity S must
marginalize over the set of possible mappings. For brevity, let
Xm = M · f (Xa,h,θ) where M is a permutation matrix. Then:

S(Xb, f (Xa,h,θ)) :=
1

2N ∑
M

N

∏
n=1

N (xbn | xmn,Iσ2
S), (2)

where 2N is the total number of possible mappings,1 and
σ2

S = 0.15 is the variance of the similarity. Example simi-
larity curves are shown in Figure 1.

We assume that the observed shapes must be transformed
by a small amount at a time, and each transformation takes a
non-negligible amount of time. If the current mental image is
Xt , then:

Xt+1 =


f (Xt ,0,ε) rotate by ε radians,
f (Xt ,1,0) flip,
f (Xa,0,0) reset to 0◦, or
f (Xa,1,0) reset and flip,

(3)

where ε∼
∣∣N (0,σ2

ε)
∣∣ and σ2

ε is the variance of the step size.
To summarize, we approximate the likelihood term of

Equation 1 using the similarity function defined in Equa-
tion 2. Because we assume mental rotations are performed
sequentially, this similarity can only be computed for the ac-
tions listed in Equation 3.

Specific models of mental rotation
In order to approximate Equation 1 using samples of the sim-
ilarity function, we must decide which places to sample and
when stop sampling. The models below differ in how they
make these decisions.

1It is 2N and not N2 because, in polar coordinates, vertices are
always connected to their two nearest neighbors in the θ dimension.
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Figure 2: Response time and accuracy comparison. Top: RT of correct responses as a function of the minimum angle of
rotation. Bottom: accuracy as a function of the minimum angle of rotation. All error bars are 95% confidence intervals.

Oracle model One hypothesis is that people compute the
direction and extent of rotation beforehand using a priori
knowledge of the correspondence between points in the im-
ages (Funt, 1983; Just & Carpenter, 1985). To reflect this hy-
pothesis, we created an “oracle” model which is told which
points on each shape correspond. From that correspondence,
it computes the correct rotation and rotates through it.

To determine the correct rotation, we solve for the rotation
matrix by computing (XaFT

h )
−1
left ·Xb, where (XaFT

h )
−1
left is the

left inverse of XaFT
h . We then check each h to see if the com-

putation produces a valid rotation matrix; the h that does is
the correct hypothesis. This gives us the true value of θ, so
Equation 1 becomes a generalized likelihood ratio test, where
θ is set to the MLE value, rather than being marginalized:

B =
maxθ p(Xb | Xa,θ,h = 0) · p0

maxθ p(Xb | Xa,θ,h = 1) · p1
. (4)

If we give equal weight to the two hypotheses, then the pri-
ors cancel out; if we weigh one hypothesis more heavily, then
our decision will be biased towards that hypothesis. However,
unless the likelihood ratio is already very close to 1, small bi-
ases in the prior will not make much of a difference.

Threshold model A model which does not know point cor-
respondences could use the following algorithm: (1) pick a
random direction; (2) take a single step; (3) if that step de-
creased similarity, then begin rotating in the reverse direction,
otherwise continue rotating in the original direction; (4) con-
tinue rotating in the chosen direction until a “match” is found
(defined as finding a value of S that exceeds a threshold); and
(5) if no match was found, flip, and start over from step one.
We only allow for the “flip” action after no match has been
found, because there is no particularly principled way for the
Threshold model to choose when to flip. We assume that the
locations where S is greater than the threshold correspond to
the true θ (or points near the true θ). So, as with the Oracle
model, we use Equation 4.

Hill Climbing model In the current formulation of the
problem, choosing the threshold is straightforward because
we know both the exact geometry of the shapes and that a
linear transformation exists which will align them. However,
this choice is not always clear a priori, as the global opti-
mum depends on many factors (e.g., shape complexity, di-

mensionality, perceptual uncertainty, and whether the shapes
are identical). One way to deal with the problem of choosing
a threshold would be use a global optimization strategy; how-
ever, this would not result in the linear RT found by Shepard
and Metzler (1971). A second alternative is to perform a Hill
Climbing (HC) search; i.e., rotate in the direction that in-
creases similarity until no further improvement can be found.
In contrast with the Threshold model, this results in arriving
in a local maximum (which may or may not be the global
maximum). Thus, as with the Oracle and Threshold models,
we use Equation 4. We only allow for the “flip” action after a
local maximum has been reached, because like the Threshold
model, there is otherwise no principled way for the HC model
to choose when to flip.

Bayesian Quadrature model While the previous few mod-
els all focused on searching for the global maximum, we need
only approximate Equation 1. We hypothesize a model based
on the idea of active sampling (e.g., Gureckis & Markant,
2012): instead of searching for a maximum, we maintain a
probability distribution over our estimate of Equation 1, and
then sample actions which are expected to improve that esti-
mate. This strategy has the benefits that it does not make as-
sumptions about the scale of the similarity function; and, by
choosing to sample places which are informative, this method
implicitly minimizes the amount of rotation.

We denote Zh as our estimate of the likelihood for
hypothesis h, and write its distribution as: p(Zh) =∫
[
∫

S(Xb, f (Xa,θ,h))p(θ)dθ] p(S)dS, where S is the sim-
ilarity function, and p(S) is a prior over similarity func-
tions. This method of estimating an integral is known
in the machine-learning literature as Bayesian Quadrature
(Diaconis, 1988; Osborne et al., 2012), or BQ. Denoting
Sh = S(Xb, f (Xa,θ,h)), we first place a Gaussian Process
(Rasmussen & Williams, 2006), or GP, prior on the log of
Sh in order to enforce positivity after it is exponentiated,
i.e. E[Zh] ≈

∫
exp(µh(θ))p(θ)dθ, where µh := µ(logSh) is

the mean of the log-GP (Osborne et al., 2012). To approx-
imate this integral, we fit a second GP over points sampled
from the log-GP, which we denote as S̄h := exp(µh). Then,
from Duvenaud (2013), we have E[Zh]≈

∫
µ̄h(θ)p(θ)dθ and

V(Zh) ≈
∫∫

Covh(θ,θ
′)µ̄h(θ)µ̄h(θ

′)p(θ)p(θ′)dθdθ′, where
µ̄h := µ(S̄h) is the mean of the second GP, and Covh :=
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Figure 3: Model vs. human RTs. Each subplot shows the z-scored model RTs (x-axis) vs. the z-scored human RTs (y-axis).
Pearson correlations are shown beneath each subplot. The dotted lines are x = y.

Cov(logSh) is the covariance of the log-GP.
Assuming independence, we can now write p(Zh) ≈

N (Zh | E[Zh],V(Zh)), which gives us a distribution over the
likelihood ratio in Equation 1: p(B)≈N (Z0 | E[Z0],V(Z0)) ·
p0/N (Z1 | E[Z1],V(Z1)) · p1. This distribution cannot easily
be calculated, but we are only interested in whether Z0 > Z1
or Z1 > Z0. So, we use ZD = p0 · Z0− p1 · Z1 and compute
p(ZD) ∝ N (p0 ·E[Z0]− p1 ·E[Z1], p2

0 ·V(Z0) + p2
1 ·V(Z1)).

We then sample new observations until we are at least 95%
confident that ZD 6= 0. In other words, when p(ZD < 0) <
0.025, we accept h = 0, and when p(ZD < 0) > 0.975, we
accept h = 1. Because we compare the hypotheses in order to
determine when to stop sampling, biasing the prior should re-
sult in requiring less evidence for one hypothesis before stop-
ping, and more evidence for the other hypothesis.

To choose where to sample, we compute the expected vari-
ance of Zh given a new observation at θa. From Osborne
et al. (2012), we compute E[V(Zh|θa)] = V(Zh) +E[Zh]−∫
E[Zh|θa]

2N (µh(θa),Covh(θa,θa))dlogSh(θa) for each of
the actions in Eq. 3; we pick the one with the lowest value.

Methods
To evaluate the models described previously, we ran a behav-
ioral experiment based on classic mental rotation studies (e.g.
Shepard & Metzler, 1971; Cooper, 1975).

Stimuli We randomly generated 20 shapes of five or six ver-
tices (e.g., Figure 1). For each shape, we computed 20 “same”
and 20 “flipped” stimuli pairs, with 18 rotations (θ) spaced at
20◦ increments between 0◦ and 360◦ (with 0◦ and 180◦ re-
peated twice, in order to gather an equal number of responses
for each angle between 0◦ and 180◦). “Same” pairs were cre-
ated by rotating Xa by θ; “flipped” pairs were first reflected
Xa across the y-axis, then rotated by θ.

We generated five additional shapes to be used in a practice
block of 10 trials. Across these trials, there was one “flipped”
and one “same” repetition of each shape and each angle (60◦,
120◦, 180◦, 240◦, or 300◦) such that no shape was presented
at the same angle twice. We also generated a sixth shape to
include with the instructions. This shape had both a “flipped”
and “same” version, each rotated to 320◦.

Participants and Design We recruited 247 participants on
Amazon’s Mechanical Turk using the psiTurk experiment
framework (McDonnell et al., 2012). Each participant was
paid $1.00 for 15 minutes of work, consisting of one block
of 10 practice trials followed by two blocks of 100 randomly

ordered experiment trials.
All participants saw the same 10 practice trials as de-

scribed above. There were 720 unique experimental stim-
uli (20 shapes × 18 angles × 2 reflections), though because
stimuli with rotations of 0◦ or 180◦ were repeated twice, there
were 800 total experimental stimuli. These stimuli were split
across eight conditions in the following manner: first, stimuli
were split into four blocks of 200 trials. Within each block,
each shape was repeated ten times and each rotation was re-
peated ten times (five “same”, five “flipped”), such that across
all blocks, each stimulus appeared once. Each block was then
split in half, and participants completed two half-blocks.

Procedure Participants were given the following instruc-
tions while being shown an example “same” pair and an ex-
ample “flipped” pair: “On each trial, you will see two images.
Sometimes, they show the same object. Other times, the im-
ages show flipped objects. The task is to determine whether
the two images show the same object or flipped objects.”

On each trial, participants were instructed to press the ‘b’
key to begin and to focus on the fixation cross that appeared
for 750ms afterwards. The two images were then presented
side-by-side, each at 300px × 300px, and participants could
press ‘s’ to indicate they thought the images depicted the
“same” object, or ‘d’ to indicate they thought the images de-
picted “flipped” objects. While there was no limit on RT,
we urged participants to answer as quickly as possible while
maintaining at least 85% accuracy in the experimental blocks.

Results
Of the 247 participants, 200 (81%) were included in our anal-
yses. Of the other 47, we excluded 10 (4%) because of an
experimental error, 6 (2.4%) because they had already com-
pleted a related experiment, and 31 (12.6%) because they
failed a comprehension check, which was defined as correctly
answering at least 85% of stimuli with a rotation of either 0◦,
20◦, or 340◦. We also excluded 82 trials for which the RT was
either less than 100ms or greater than 20s.

For each model, we ran 50 samples for each of the 800
experimental stimuli. The step size parameter (σε) was fit to
human RTs for each of the models, resulting in σε = 0.6 for
the Threshold and BQ models and σε = 0.1 for the Oracle
and HC models. We also ran the models under two different
priors, p(h= 0)= 0.5 (the “equal” prior) and p(h= 0)= 0.55
(the “unequal” prior). As expected, this only had a major
effect on the stopping criteria for the BQ model.
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Figure 4: Response time histograms. Each subplot shows the distribution of RTs on correct trials for people and the models.

General analysis For analyses of RT, confidence intervals
around harmonic means of correct responses were computed
using a bootstrap analysis of 10000 bootstrap samples (sam-
pled with replacement). We also used a bootstrap analysis
of 10000 bootstrap samples to compute the confidence inter-
vals around both Spearman (ρ) and Pearson (r) correlations.
Unless otherwise specified, all correlations were computed
over 720 stimuli. For analyses of accuracy, confidence inter-
vals were computed from a binomial proportion with a Jef-
frey’s beta prior. To test if judgments were above chance on
a particular stimulus, we used the same binomial proportion
and tested whether p(p(correct)≤ 0.5) ≤ 0.05

720 , where 1
720 is

a Bonferroni correction for multiple comparisons.

Human The average RT across all correctly-judged stimuli
was M = 1981.1 msec, 95% CI [1969.4 msec,1992.1 msec];
the full histogram of RTs can be seen in Figure 4. The min-
imum angle of rotation was significantly rank-order (Spear-
man) correlated with average per-stimulus RTs, both for
“flipped” (ρ = 0.49, 95% CI [0.40,0.57]) and “same” pairs
(ρ= 0.66, 95% CI [0.60,0.72]). While this replicates the gen-
eral result of previous experiments (e.g., Shepard & Metzler,
1971; Cooper, 1975), our results are not as linear (Figure 2).

The average accuracy across all stimuli was M = 88.1%,
95% CI [87.8%,88.4%], though there were 64 stimuli (out
of 720) for which people were not above chance. The mini-
mum angle was also correlated with participants’ average per-
stimulus accuracy, though much more so for “same” pairs
(ρ = −0.77, 95% CI [−0.81,−0.72]) than “flipped” pairs
(ρ = −0.36, 95% CI [−0.46,−0.26]). This is the same re-
sult found both by Cooper (1975) and Gardony et al. (2014).

There was a significant effect of trial number both on
RT (ρ = −0.76, 95% CI [−0.82,−0.68]) and on accuracy
(ρ= 0.66, 95% CI [0.58,0.74]), though the effect on accuracy
was not significant during the second half of the experiment
(ρ = 0.50, 95% CI [0.33,0.65] for the first half vs. ρ = 0.16,
95% CI [−0.03,0.34] for the second half). These effects may
have contributed to the not-quite-linearity of the human RTs;
future work should collect more data per participant.

Oracle model The number of actions taken by the Oracle
model was perfectly correlated with the minimum angle of
rotation (Figure 2). The Oracle model was the best fit to hu-
man RTs, with a correlation of r = 0.56, 95% CI [0.51,0.61]
(Figure 3), although the distribution of response times did not
match that of people (Figure 4). Moreover, the Oracle model
was 100% accurate, and therefore could not explain the effect
of rotation on people’s accuracy.

Threshold model There was an overall monotonic relation-
ship between the minimum angle of rotation and the number
of actions taken by the Threshold model (Figure 2), though
this relationship did not hold for individual shapes (e.g., Fig-
ure 5). The Threshold model was able to explain a moderate
amount of the variance in human RTs, with a correlation of
r = 0.38, 95% CI [0.32,0.45] (Figure 3). Like the Oracle
model, the overall distribution of its RTs did not match that
of people (Figure 4). The Threshold model had 100% accu-
racy, and thus did not exhibit a relationship between mini-
mum angle and accuracy. As noted, we fit σε = 0.6 for the
Threshold model. This had the interesting effect of causing
the Threshold model to overrotate, because the step size was
large enough that it sometimes missed the global maximum,
and had to do another full rotation to find it.

HC model The HC was the only model for which there
was no monotonic relationship between rotation and RT (Fig-
ure 2). Moreover, the HC model was barely above chance
(M = 59.7%, 95% CI [59.2%,60.2%]) and there were 312
stimuli for which it was not above chance. The HC model
was not a good predictor of human RTs (r = 0.09, 95% CI
[0.01,0.18]), as shown in Figure 3. It was a moderate predic-
tor of human accuracy (r = 0.24, 95% CI [0.17,0.31]).

BQ model Like the Oracle and Threshold models, there
was an overall monotonic relationship between rotation and
the number of steps taken by the BQ model (Figure 2). Un-
like the Threshold model, this relationship existed for individ-
ual shapes as well (e.g., Figure 5). The BQ model explained
variance in human RTs about as well as the Threshold model
(Figure 3), with a correlation of r = 0.26, 95% CI [0.18,0.33]
for the equal prior and r = 0.31, 95% CI [0.23,0.39] for the
unequal prior, and the RT distribution from the BQ model had
the same overall shape as that of people (Figure 4).

The BQ model was quite accurate overall (equal prior:
(M = 95.3%, 95% CI [95.1%,95.5%]; unequal prior: M =
95.3%, 95% CI [95.1%,95.5%]). With the equal prior, there
were 12 stimuli for which it was not above chance; with the
unequal prior, there were 14. The correlation with people’s
accuracy was r = 0.23, 95% CI [0.16,0.30] (equal prior) and
r = 0.15, 95% CI [0.08,0.21] (unequal prior).

Because the BQ model relies on Equation 1 for its stop-
ping criteria (as opposed to just finding a maximum), the prior
p(h) had an observable effect (Figure 2). As expected, with
just a small bias of p(h = 0) = 0.55, there was a clear sep-
aration in RTs for “same” versus “flipped” stimuli: because
of this bias, the model needed less evidence before accepting
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Figure 5: Typical RT curves for a single object. These plots
correspond to the object shown in Figure 1. Left: human
curves are either linear (as with the “same” pairs), or lin-
ear and then flat (as with the “flipped” pairs). Middle: the
Threshold model does not have a monotonic relationship with
rotation. Right: the BQ model is roughly linear.

h = 0 (thus taking less time). This separation is similar to
the trend also observed in human RTs. The prior also had an
effect on accuracy (though this did not reflect human behav-
ior): the bias towards h = 0 meant that the model was more
likely to judge a pair as “same”, thus, accuracy increased for
“same” pairs, but decreased for “flipped” pairs.

Discussion
We set out to answer the question of how people decide what
to simulate when using mental imagery. Focusing on the spe-
cific case of determining the direction and extent of mental
rotation, we formalized four models and compared their per-
formance with the results of a behavioral experiment.

The Oracle and Threshold models were the best predic-
tors of human RTs. However, both are somewhat unsatisfy-
ing explanations because they rely on a priori knowledge that
people are unlikely to have. Moreover, they offer no explana-
tion of several aspects of human behavior. First, their overall
RT distributions look nothing like people’s (Figure 4). Sec-
ond, they both are 100% accurate, and so cannot explain the
systematic relationship between rotation and human accuracy
(Figure 2). Third, neither model can explain the difference in
people’s behavior on “same” and “flipped” stimuli.

In contrast, the BQ model was nearly as good as the
Threshold model, yet it makes no assumptions about people’s
a priori knowledge. Furthermore, the BQ model matches
people’s behavior better than the Oracle or Threshold mod-
els in several ways. Its overall RT histogram has the same
general shape as people’s (Figure 4). Moreover, a closer
look shows that the BQ model maintains the monotonic re-
lationship between angle and RT even on individual stimuli,
while the Threshold model does not (Figure 5). Finally, the
BQ model’s adaptive stopping rule is sensitive to the prior,
and thus provides a possible explanation for why people are
slower to respond on “flipped” stimulus pairs.

Thus, we suggest that the BQ model offers the most
promising explanation of people’s behavior on the mental ro-
tation task to date. While it is not a perfect account, there
are several ways in which it could be improved. For exam-
ple, while we used holistic rotations in this paper, there is
evidence that people compare individual features of shapes
(Just & Carpenter, 1976; Yuille & Steiger, 1982). Addition-

ally, a different active sampling approach could maintain a
distribution over the location and value of the global max-
imum, rather than over the integral. We intend to explore
these possibilities in future work, building upon the founda-
tion established in this paper and working towards a better
understanding of what people choose to simulate.
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